Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Cell Rep Med ; 3(9): 100728, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-1984241

ABSTRACT

There is a need for safe and effective platform vaccines to protect against coronavirus disease 2019 (COVID-19) and other infectious diseases. In this randomized, double-blinded, placebo-controlled phase 2/3 trial, we evaluate the safety and efficacy of a multi-dose Bacillus Calmette-Guérin (BCG) vaccine for the prevention of COVID-19 and other infectious disease in a COVID-19-unvaccinated, at-risk-community-based cohort. The at-risk population is made of up of adults with type 1 diabetes. We enrolled 144 subjects and randomized 96 to BCG and 48 to placebo. There were no dropouts over the 15-month trial. A cumulative incidence of 12.5% of placebo-treated and 1% of BCG-treated participants meets criteria for confirmed COVID-19, yielding an efficacy of 92%. The BCG group also displayed fewer infectious disease symptoms and lesser severity and fewer infectious disease events per patient, including COVID-19. There were no BCG-related systemic adverse events. BCG's broad-based infection protection suggests that it may provide platform protection against new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and other pathogens.


Subject(s)
COVID-19 , Communicable Diseases , Diabetes Mellitus, Type 1 , Mycobacterium bovis , Adult , BCG Vaccine/therapeutic use , COVID-19/prevention & control , Diabetes Mellitus, Type 1/drug therapy , Humans , SARS-CoV-2 , Vaccination
2.
Pathogens ; 10(2)2021 Feb 13.
Article in English | MEDLINE | ID: covidwho-1090307

ABSTRACT

Bioinspired organ-level in vitro platforms that recapitulate human organ physiology and organ-specific responses have emerged as effective technologies for infectious disease research, drug discovery, and personalized medicine. A major challenge in tissue engineering for infectious diseases has been the reconstruction of the dynamic 3D microenvironment reflecting the architectural and functional complexity of the human body in order to more accurately model the initiation and progression of host-microbe interactions. By bridging the gap between in vitro experimental models and human pathophysiology and providing alternatives for animal models, organ-on-chip microfluidic devices have so far been implemented in multiple research areas, contributing to major advances in the field. Given the emergence of the recent pandemic, plug-and-play organ chips may hold the key for tackling an unmet clinical need in the development of effective therapeutic strategies. In this review, latest studies harnessing organ-on-chip platforms to unravel host-pathogen interactions are presented to highlight the prospects for the microfluidic technology in infectious diseases research.

SELECTION OF CITATIONS
SEARCH DETAIL